已知F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,O为坐标原点,点P(-1,根号2/2)在椭圆上,线段PF2与y轴的交点M满足向量PM+向量F2M=向量0.圆O是以F1F
题目
已知F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,O为坐标原点,点P(-1,根号2/2)在椭圆上,线段PF2与y轴的交点M满足向量PM+向量F2M=向量0.圆O是以F1F2为直径的圆,直线l:y=kx+m与圆O相切,并与椭圆交于不同的两点A,B.
(1)求椭圆的标准方程;
(2)当向量OA*向量OB=入且满足2/3
答案
(1)
点P(-1,√2 /2)在椭圆上,代入椭圆的方程得到
1/a²+1/2b²=1
PF2与y轴的交点M满足向量PM+向量F2M=向量0,
即M是PF2的中点,且M的横坐标为0,
那么F2的横坐标就是P点横坐标的相反数,
即F2(1,0)
故a²-b²=1,与1/a²+1/2b²=1
连解得到a²=2,b²=1,
即椭圆的标准方程为x²/2+ y²=1
(2)
显然以F1F2为直径的圆为x²+y²=1
而直线y=kx+m与圆O相切,即O点到直线的距离为1,
m²/(1+k²)=1
设y=kx+m与椭圆交于不同的两点A(x1,y1),B(x2,y2)
即x1,x2是方程x²/2+ (kx+m)²=1的解,化简得到(2k²+1)x² +4kmx+2m²-2=0
故x1+x2= -4km/(2k²+1),x1*x2=(2m²-2)/(2k²+1)
显然向量OA*向量OB
=x1*x2+y1*y2
=x1*x2+(kx1+m)(kx2+m)
=(k²+1)x1*x2+mk(x1+x2)+m²
=(k²+1)(2m²-2)/(2k²+1) -4m²k²/(2k²+1) +m² 代入m²=1+k²
=(k²+1)/(2k²+1)
= λ
而2/3≤λ≤3/4,
解得 1/2≤k² ≤1
而显然O点到AB的距离d为圆半径1,
|AB|
=√(x1-x2)² *√(1+k²)
=√[(x1+x2)² -4x1*x2] * √(1+k²)
= 2√2 |k| / (2k²+1)
= 2√2 / (2|k| +1/|k| )
即三角形OAB的面积
S=1/2 * 1*|AB|
= √2 / (2|k| +1/|k| )
而1/2≤k² ≤1,
所以显然在k²=1/2时,
S取最大值1/2,
在k²=1时,
S取最小值√2 /3
于是三角形OAB的面积S的取值范围是
√2 /3 ≤S≤ 1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- y=根号下(logaX-1)的定义域,其中a为底数,x是真数
- 急写出下列集合之间的关系,并用图形表示 A={有理数},B={偶数},C={奇数},D={x|x是能被4整除的数}
- 一个长方形玻璃缸,从里面量长50cm,宽40cm,水深25cm.如果放入一块铁块(铁块完全浸没在水中)水深为3分米.这块铁块的体积是多少立方分米?
- give the bill to your friend to pay (for) for需要跟上吗?为什么?
- should 的用法
- 8、混合液中NacL的浓度为0.1MOL/kg,Ca后的浓度为0.2 MOL/kg,则该溶液的离子强度为:( )
- 某电影院大厅共有座位30排,第10排有座位38个,且从
- 小兰有40颗珠子,分给小华8颗,现在小华根小兰一样多,小华原来有多少颗?
- 是日更定,余拿一小船,拥毳衣炉火,独往湖心亭看雪.雾凇沆砀,天与云与山与水,上下一白.湖上影子,惟长堤一痕、湖心亭一点、与余舟一芥、舟中人两三粒而已 这句话中哪一个是正面描写?那个是侧面烘托?
- 说明文有哪些说明方法