设实数a,b,c满足a≤b≤c,且a^2+b^2+c ^2=9.证明abc+1>3a

设实数a,b,c满足a≤b≤c,且a^2+b^2+c ^2=9.证明abc+1>3a

题目
设实数a,b,c满足a≤b≤c,且a^2+b^2+c ^2=9.证明abc+1>3a
答案
当a=0时,显然成立
当a>0时,∵a≤b≤c,且a^2+b^2+c ^2=9 ∴a^2≤3,bc≥3
∴bc+1/a>3 两边同时乘以a abc+1>3a
当a<0时 ,∵a≤b≤c,且a^2+b^2+c ^2=9 ∴a^2≥3,bc≤3
∴bc-3≤0 a(bc-3)≥0 a(bc-3)+1>0
即得abc+1>3a 综上所述
abc+1>3a 成立
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.