已知f(x)=ax²+bx+3a+b是偶函数,定义域为〔a-1,2a〕,则f(x)的单调递增区间为?

已知f(x)=ax²+bx+3a+b是偶函数,定义域为〔a-1,2a〕,则f(x)的单调递增区间为?

题目
已知f(x)=ax²+bx+3a+b是偶函数,定义域为〔a-1,2a〕,则f(x)的单调递增区间为?
答案
∵f(x)=ax²+bx+3a+b是偶函数
∴b=0
又定义域为〔a-1,2a)
∴a-1+2a=0 解得:a=1/3
∴f(x)=(1/3)x²+1 图像是开口向上的抛物线
∴f(x)的单调递增区间为[0,+∞)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.