正三棱柱ABC—A1B1C1的底面边长a点M在边BC上ΔAMC1是以点M为直角顶点的等腰直角三角形
题目
正三棱柱ABC—A1B1C1的底面边长a点M在边BC上ΔAMC1是以点M为直角顶点的等腰直角三角形
求证点M为边BC中点 2 求点C到平面AMC1的距离
答案
缺少高的条件,我增加正三棱柱高=√2a/2的条件.
1、AC1^2=AC^2+CC1^2,
AC1=√[a^2+(a√2/2)^2]=√6a/2,
∵△AMC1是等腰直角△,
MC1=AM=√2/2*AC1=√3a/2,
而边长为a的正三角形其高就是√3a/2,故M是BC的中点.
2、C点至平面AMC1的距离d,可看成是底而AMC1,顶点是C的三棱锥C-AMC1的高,
VC1-AMC=(√3/4)*a^2/2*(√2a/2)/3=√6a^3/48,体积是一半正三角形面积乘以棱柱高的1/3,S△ANC1=AM*MC1/2=(3a^2/8)
VC-ABC1=S△ANC1*d/3=a^2/8*d,
a^2/8*d=√6a^3/48
d=√6a/6.
点C到平面AMC1的距离是√6a/6.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点