如图,梯形ABCD中,AD∥BC,∠A=90°,E是AB上一点,EC=ED,∠BEC=75°,∠AED=45°,求证:AB=BC.

如图,梯形ABCD中,AD∥BC,∠A=90°,E是AB上一点,EC=ED,∠BEC=75°,∠AED=45°,求证:AB=BC.

题目
如图,梯形ABCD中,AD∥BC,∠A=90°,E是AB上一点,EC=ED,∠BEC=75°,∠AED=45°,求证:AB=BC.
答案
证明:作DF⊥BC与D点F,
梯形ABCD中,AD∥BC,∠A=90°,
∴∠B=90°,
∵DF⊥BC,
∴∠DFB=∠DFC=90°,
∴ABFD是矩形,
∴AB=DF.
∵∠BEC=75°,∠AED=45°,
∴∠DEC=60°,∠ECB=15°
△DEC是等边三角形,
∴∠DCE=60°,DC=DE.
∠DCF=∠DCE+∠ECF=75°,
在△BCE和△FDC中,
∠BEC=∠FCD
∠B=∠CFD
CE=CD

∴△BCE≌△FDC(AAS),
BC=DF.
∴AB=BC.
根据矩形的判定与性质,可得AB与FD的关系,根据角的和差,可得∠DEC的度数,根据等边三角形的判定,可得△CDE的形状,根据AAS,可得三角形全等,根据全等三角形的性质,可得证明结论.

全等三角形的判定与性质;等边三角形的判定与性质.

本题考查了全等三角形的判定与性质,利用了矩形的判定与性质,全等三角形的判定与性质.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.