已知cosa=1/7,cos(a+b)=-11/14,若a∈(0,π/2),a+b∈(π/2,π),求b的值

已知cosa=1/7,cos(a+b)=-11/14,若a∈(0,π/2),a+b∈(π/2,π),求b的值

题目
已知cosa=1/7,cos(a+b)=-11/14,若a∈(0,π/2),a+b∈(π/2,π),求b的值
答案
cosa=1/7
a∈(0,π/2)
所以sina=√(1-(cosa)^2)=4√3/7
cos(a+b)=-11/14
a+b∈(π/2,π)
所以sin(a+b)=√(1-(cos(a+b))^2)=5√3/14
a∈(0,π/2),a+b∈(π/2,π)
所以b∈(0,π)
cosb=cos(a+b-a)=cos(a+b)cosa+sin(a+b)sina
=-11/14*1/7+5√3/14*4√3/7
=49/98
=1/2
所以b=π/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.