已知向量a=(2cos(x/2),tan(x/2+π/4)),b=(根号2sin(x/2+π/4),tan(x/2-π/4)),令f(x)=a×b,是否存在实数x∈[0,π]使f(x)+f’(x)=0

已知向量a=(2cos(x/2),tan(x/2+π/4)),b=(根号2sin(x/2+π/4),tan(x/2-π/4)),令f(x)=a×b,是否存在实数x∈[0,π]使f(x)+f’(x)=0

题目
已知向量a=(2cos(x/2),tan(x/2+π/4)),b=(根号2sin(x/2+π/4),tan(x/2-π/4)),令f(x)=a×b,是否存在实数x∈[0,π]使f(x)+f’(x)=0,其中f’(x)是f(x)的导函数?若存在,则求出x的值,若不存在,则证明之
答案
f(x)=a●b= 2cos(x/2)* √2*sin(x/2+π/4)+ tan(x/2+π/4)* tan(x/2-π/4)
=2√2 sin(x/2+π/4)* cos(x/2)+ tan(x/2+π/4)* tan(x/2-π/4)
=√2(sin(x+π/4)+sin(π/4))+[cos(π/2)-cos(x+π/2)]/[ cos(x+π/2)+ cos(π/2)]
=√2*(sin(x)*cos(π/4)+cos(x)*sin(π/4)+ 1/2*√2)+[-cos(x+π/2)]/[ cos(x+π/2)]
=√2*(sin(x)* 1/2*√2+cos(x)* 1/2*√2+ 1/2*√2)-1
= sin(x)+ cos(x)
f ’(x)=cos(x)-sin(x)
则f(x)+f’(x)=2*cos(x)=0,x=π/2
即存在实数x∈[0,π]使f(x)+f’(x)=0,且x=π/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.