在△ABC中,AB=AC,P是BC边上任意一点,证明:AP的平方=AB的平方-PB·PC

在△ABC中,AB=AC,P是BC边上任意一点,证明:AP的平方=AB的平方-PB·PC

题目
在△ABC中,AB=AC,P是BC边上任意一点,证明:AP的平方=AB的平方-PB·PC
答案
作AD垂直于BC于点D
根据等腰三角形三线合一:BD=CD
Rt△ABD中:AB^2-AD^2=BD^2
Rt△ADP中:AP^2-AD^2=PD^2(勾股定理)
相减得:AB^2-AB^2=(BD+PD)(CD-PD)=BP*PC
AP的平方=AB的平方-PB·PC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.