证明有限集A和可数集B的笛卡尔乘积是可数的

证明有限集A和可数集B的笛卡尔乘积是可数的

题目
证明有限集A和可数集B的笛卡尔乘积是可数的
答案
设A有k个元素,给它们排序.
B是可数集,即存在它和集合{1,k+1,2k+1,……}的双射
A和B的笛卡尔积可如此与正整数集建立双射:
A的第i个元素与B的元素k(j-1)+1的乘积对应k(j-1)+i
容易验证,这是双射
所AXB可数
一般的,有限个有限集或可数集的笛卡尔积是有限或可数的
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.