(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数; (2)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈[4,6]时,f(x)

(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数; (2)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈[4,6]时,f(x)

题目
(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;
(2)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈[4,6]时,f(x)=2x+1,求f(x)在区间[-2,0]上的表达式.
答案
(1)证明:∵f(2+x)=f(2-x)
∴f(2+(x+2))=f(2-(x+2)),即f(x+4)=f(-x)
又∵函数f(x)的周期为4
∴f(x+4)=f(x)
∴f(-x)=f(x)
又∵x∈R,定义域关于原点对称
∴函数f(x)是偶函数
(2)当x∈[-2,0]时,-x∈[0,2]
∴-x+4∈[4,6]
又∵当x∈[4,6]时,f(x)=2x+1
∴f(-x+4)=2-x+4+1
又∵f(x+4)=f(x)
∴函数f(x)的周期为T=4
∴f(-x+4)=f(-x)
又∵函数f(x)是R上的奇函数
∴f(-x)=-f(x)
∴-f(x)=2-x+4+1
∴当x∈[-2,0]时,f(x)=-2-x+4-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.