设n阶矩阵A满足A的2次方=E,证明A的特征值只能是正负1
题目
设n阶矩阵A满足A的2次方=E,证明A的特征值只能是正负1
答案
Aa = ra,a 不为0向量,r为特征根.
a=Ea=A^2a=A(Aa)=Ara=rAa=r(ra)=r^2a
=> r^2=1,r=1 or -1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点