求与圆x^2+y^2-7+10等于0相交,所得公共弦平行于直线2x-3y-1等于0且过点A(-2,3),B(1,4)的圆的方程

求与圆x^2+y^2-7+10等于0相交,所得公共弦平行于直线2x-3y-1等于0且过点A(-2,3),B(1,4)的圆的方程

题目
求与圆x^2+y^2-7+10等于0相交,所得公共弦平行于直线2x-3y-1等于0且过点A(-2,3),B(1,4)的圆的方程
-7改为-7y
答案
你的圆的方程有问题,解的方法说一下.
因为公共弦平行于直线2x-3y-1=0
所以两圆心所在直线斜率k=-1/(2/3)=-3/2
写出两圆心所在直线方程
设直线上一点(x0,y0)为另一圆圆心
由圆过点AB解出x0和y0即可
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.