八年级上册数学人教版全等三角形
题目
八年级上册数学人教版全等三角形
答案
编辑本段|回到顶部定义 能够完全重合的两个三角形称为全等三角形.(注:全等三角形是相似三角形中的特殊情况)
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.
由此,可以得出:全等三角形的对应边相等,对应角相等.
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
编辑本段|回到顶部三角形全等的判定公理及推论 1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因.
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”).
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”).
由3可推到
4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理.
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状.
A是英文角的缩写(angle),S是英文边的缩写(side).
编辑本段|回到顶部性质 1、全等三角形的对应角相等、对应边相等.
2、全等三角形的对应边上的高对应相等.
3、全等三角形的对应角平分线相等.
4、全等三角形的对应中线相等.
5、全等三角形面积相等.
6、全等三角形周长相等.
(以上可以简称:全等三角形的对应元素相等)
7、三边对应相等的两个三角形全等.(SSS)
8、两边和它们的夹角对应相等的两个三角形全等.(SAS)
9、两角和它们的夹边对应相等的两个三角形全等.(ASA)
10、两个角和其中一个角的对边对应相等的两个三角形全等.(AAS)
11、斜边和一条直角边对应相等的两个直角三角形全等.(HL)
编辑本段|回到顶部运用 1、性质中三角形全等是条件,结论是对应角、对应边相等. 而全等的判定却刚好相反.
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键.在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便.
3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形.
4、用在实际中,一般我们用全等三角形测等距离.以及等角,用于工业和军事.有一定帮助.
编辑本段|回到顶部做题技巧 一般来说考试中线段和角相等需要证明全等.
因此我们可以来采取逆思维的方式.
来想要证全等,则需要什么条件
另一种则要根据题目中给出的已知条件,求出有关信息.
然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点