已知定义在自然数集合n上的函数f(n)满足f(n+2)=f(n+1)-f(n)

已知定义在自然数集合n上的函数f(n)满足f(n+2)=f(n+1)-f(n)

题目
已知定义在自然数集合n上的函数f(n)满足f(n+2)=f(n+1)-f(n)
证明f(n)是一个周期为6的函数
若f(1)=1 f(2)=3求f(2008)
答案
∵f(n+6)=f[(n+4)+2]=f(n+5)-f(n+4)
=f(n+4)-f(n+3)-f(n+4)
=-f(n+3)
=-[f(n+2)-f(n+1)]
=f(n+1)-f(n+2)
=f(n+1)-[f(n+1)-f(n)]
=f(n)
∴f(n)是一个周期为6的函数
∵2008除以6商334余4 ∴f(2008)=f(4)=f(3)-f(2)=[f(2)-f(1)]-f(2)=-f(1)=-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.