有一片牧场,草每天都在匀速生长(草每天增长量相等).如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草,设每头牛吃草的量是相等的,问如果放牧16头牛,几天可以吃

有一片牧场,草每天都在匀速生长(草每天增长量相等).如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草,设每头牛吃草的量是相等的,问如果放牧16头牛,几天可以吃

题目
有一片牧场,草每天都在匀速生长(草每天增长量相等).如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草,设每头牛吃草的量是相等的,问如果放牧16头牛,几天可以吃完牧草.
答案
设每头牛每天吃草量是x,草每天增长量是y,16头牛z天吃完牧草,再设牧场原有草量是a.
根据题意,得
a+6y=24×6x   ①
a+8y=21×8x   ②
a+yz=16xz      ③

②-①,得y=12x④
③-②,得(z-8)y=8x(2z-21).⑤
由④、⑤,得z=18.
答:如果放牧16头牛,则18天可以吃完牧草.
首先设每头牛每天吃草量是x,草每天增长量是y,16头牛z天吃完牧草,再设牧场原有草量是a.
根据  原草量+每天生长的草量×放牧的天数=每头牛每天吃草量×头数×天数
列出方程组
a+6y=24×6x
a+8y=21×8x
a+yz=16xz
,可解得z的值即为所求.

三元一次方程组的应用.

本题考查三元一次方程组的应用.有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知敷辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求”.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.