若函数f(x)=(a-2)x2+(a-1)x+3是偶函数,则函数f(x)的单调递减区间为_.
题目
若函数f(x)=(a-2)x2+(a-1)x+3是偶函数,则函数f(x)的单调递减区间为______.
答案
∵函数f(x)=(a-2)x2+(a-1)x+3是偶函数,
∴f(-x)=f(x)
∴(a-2)x2-(a-1)x+3=(a-2)x2+(a-1)x+3
∴-(a-1)=a-1,解得a=1
∴f(x)=-x2+3
∴函数f(x)的单调递减区间为[0,+∞)
故答案为:[0,+∞).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点