若平面点集A中的任一点(X0,Y0),总存在正实数r,使得集合{(x,y)/[(x-x0)^2+(y-y0)^2]^(1/2)0}

若平面点集A中的任一点(X0,Y0),总存在正实数r,使得集合{(x,y)/[(x-x0)^2+(y-y0)^2]^(1/2)0}

题目
若平面点集A中的任一点(X0,Y0),总存在正实数r,使得集合{(x,y)/[(x-x0)^2+(y-y0)^2]^(1/2)0}
3、{(x,y)/-6
答案
新定义的含义是,对于任意的集合A中的点,以此点为圆心作圆,肯定存在一个圆,这个圆在集合A的区域内.
1、这个集合是圆周,注意:是圆周,肯定不是开集;
2、这是个以直线x+y+2=0为边界的区域(不包含边界的),在其中任取一点,以此点为圆心作圆,肯定存在一个圆,是完全落在这个区域内.从而这是个开集;
3、3和2的区别就在于3是有边界的,若点取在边界上,则无法做到,也就是说这个不是开集;
4、4和1的区别是,1是圆周,4是圆盘(含有内部且不包含边界的.若包含边界,则就不是开集了),是可以满足新定义的,是开集.
所以,这几个选项中,2、4是开集,1、3不是开集.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.