用数学归纳法证明1×4+2×7+3×10+…+n(3n+1)=n(n+1)2.

用数学归纳法证明1×4+2×7+3×10+…+n(3n+1)=n(n+1)2.

题目
用数学归纳法证明1×4+2×7+3×10+…+n(3n+1)=n(n+1)2
答案
证明:①当n=1时,3n+1=4,而等式左边起始为1×4的连续的正整数积的和,
故n=1时,等式左端=1×4=4,右端=4,成立;
②设当n=k时,1×4+2×7+3×10+…+k(3k+1)=k(k+1)2成立,
则当n=k+1时,1×4+2×7+3×10+…+k(3k+1)+(k+1)(3k+4)=k(k+1)2+(k+1)(3k+4)=(k+1)(k2+k+3k+4)=(k+1)(k+1+1)2,即n=k+1,成立
综上所述,1×4+2×7+3×10+…+n(3n+1)=n(n+1)2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.