设M,P是两个非空集合,定义M与P的差集为M-P={x|x∈M且x∉P},求证M-(M-P)=M∩P

设M,P是两个非空集合,定义M与P的差集为M-P={x|x∈M且x∉P},求证M-(M-P)=M∩P

题目
设M,P是两个非空集合,定义M与P的差集为M-P={x|x∈M且x∉P},求证M-(M-P)=M∩P
答案里分了两种情况讨论:M∩P=∅时,M∩P≠∅时.可它说当M∩P≠∅时,M-P=M.完全不懂.
答案
当M∩P=∅时
由于任意x∈M都有x∉P,所以M-P=M
所以M-(M-P)=∅
当M-P≠∅时
M-P表示了在M中但不在P中的元素
M-(M-P)表示了在M中但不在M-P中的元素
由于M-P中的元素都不在P中,所以M-(M-P)中的元素都在P中,所以M-(M-P)中的元素都在M∩P中
反过来M∩P中的元素也符合M-(M-P)的定义
所以M-(M-P)=M∩P
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.