求过两圆x^2+y^2-x-y-2=0与x^2+y^2+4x-4y-8=0的交点和点(3,1)的圆的方程.
题目
求过两圆x^2+y^2-x-y-2=0与x^2+y^2+4x-4y-8=0的交点和点(3,1)的圆的方程.
答案
设新方程为:
x^2+y^2-x-y-2+k(x^2+y^2+4x-4y-8)=0 (1)
代入点(3,1),解出k=-0.4
代入(1)即得出圆方程为:
3x^2+3y^2-13x+3y+6=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点