如图,在△ABC中,∠ABD=∠ACD=60°,∠ADB=90°-1/2∠BDC. 求证:△ABC是等腰三角形.
题目
如图,在△ABC中,∠ABD=∠ACD=60°,∠ADB=90°-
答案
证明:∵∠ABD=∠ACD,
∴A、B、C、D四点共圆,
∴∠ADB=∠ACB,∠BDC=∠BAC,
∵∠ADB=90°-
∠BDC,
∴∠ACB=90°-
∠BAC,
∴2∠ACB+∠BAC=180°
又∵∠ABC+∠ACB+∠BAC=180°
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点