设向量a=(cos55,sin55),b=(cos25,sin25),若t是实数,则ㄧa-tbㄧ的最小值为

设向量a=(cos55,sin55),b=(cos25,sin25),若t是实数,则ㄧa-tbㄧ的最小值为

题目
设向量a=(cos55,sin55),b=(cos25,sin25),若t是实数,则ㄧa-tbㄧ的最小值为
答案
a-tb=(cos55-tcos25,sin55-tsin25)
ㄧa-tbㄧ^2=(cos55-tcos25)^2+(sin55-tsin25)^2=1+t^2-2tcos30=t^2-根3t+1
当t=根3/2 的时候
|a-tb|^2取最小值 为 3/4-3/2+1=1/4
所以|a-2b|的最小值是 1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.