设f(x)连续,证明(积分区间为0到π)∫xf(sinx)dx=(π/2)∫f(sinx)dx
题目
设f(x)连续,证明(积分区间为0到π)∫xf(sinx)dx=(π/2)∫f(sinx)dx
答案
证明:令x=π-t,则x由0到π,t由π到0,dx=-dt
原式记为I
则I=-(积分区间π到0)∫(π-t)f(sin(π-t)dt
=-(积分区间π到0)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫πf(sin(t)dt-I
所以2I=(积分区间0到π)∫πf(sin(t)dt
即I=(π/2)∫f(sint)dt=(π/2)∫f(sinx)dx
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点