双曲线x^2/a^2-y^2/b^2=1的左右焦点分别为F1F2,点P在双曲线的右支上,且PF1=7PF2,求双曲线的离心率最大值
题目
双曲线x^2/a^2-y^2/b^2=1的左右焦点分别为F1F2,点P在双曲线的右支上,且PF1=7PF2,求双曲线的离心率最大值
答案
已知双曲线方程为:x²/a²-y²/b²=1∴设P点坐标为:(asecθ,btanθ)∵P点在右支上,所以:-π/2<θ<π/2∵PF1-PF2=2a=7PF2-PF2=6PF2∴a=3PF2∵P:(asecθ,btanθ),F2(c,0)∴|PF2|²=(asecθ-...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点