椭圆方程离心率为二分之根号三,过右焦点F的直线和椭圆有两个交点A、B,若向量AF=3向量FB,求斜率k
题目
椭圆方程离心率为二分之根号三,过右焦点F的直线和椭圆有两个交点A、B,若向量AF=3向量FB,求斜率k
答案
k=±√2∵向量AF=3向量FB∴│AF│=3│BF│分别过点A,B作AC,BD垂直于准线设│BF│=a,∴│AF│=3a∴│BD│=a/e,│AC│=3a/e过点B作BG垂直于AC∴AG=3a/e-a/e=2a/e∴cos∠GAB=│AG│/│AB│=2a/e/4a=1/2e=√3/3∴tan∠GA...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点