研究方程lg(x-1)+lg(x-3)=lg(a-x)(a属于R)的实数解的个数
题目
研究方程lg(x-1)+lg(x-3)=lg(a-x)(a属于R)的实数解的个数
答案
lg(x-1)+lg(x-3)=lg(a-x)(a属于R) 则3<>x<a 且lg[(x-1)(x-3)]=lg(a-x)(a属于R) 若此式要有解,则必须(x-1)(x-3)=a-x 设函数f(x)=(x-1)(x-3),可知此函数开口向上,且与x轴的交点为1,3.∵x>3...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点