在菱形ABCD中,∠ABC=60°,E是对角线AC上的一点,F是线段BC延长线上的一点,且CF=AE,连接BE、EF
题目
在菱形ABCD中,∠ABC=60°,E是对角线AC上的一点,F是线段BC延长线上的一点,且CF=AE,连接BE、EF
(1)若E是线段AC的中点,求证BE=EF
(2)若E是线段AC或AC延长线上的一点,其他条件不变,线段BE,EF有怎样的数量关系?
答案
(1)BE=AE*根号3 角EBC=60度/2=30度 CF=AE BF=3*AE余弦定理:EF的平方=BE的平方+BF的平方-2*BE*BF*cos30度=3*AE的平方+9*AE的平方-2*(根号3*AE)*(3*AE)*(根号3)/2=3*AE的平方 得EF=AE*根号3=BE 即BE=EF(2)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点