已知2次函数y=x的平方(m平方+4)x-2m的平方-12.

已知2次函数y=x的平方(m平方+4)x-2m的平方-12.

题目
已知2次函数y=x的平方(m平方+4)x-2m的平方-12.
(1)证明:无论m取何实数,2次函数的图像与x轴恒有俩个交点,切一个焦点是(-2,0);
(2)m为何值时,俩交点之间的距离为12;
(3)m为何值是,俩交点之间的距离最小
答案
已知二次函数y=x²+(m²+4)x-2m²-12.
(1)证明:无论m取何实数,二次函数的图像与x轴恒有俩个交点,且一个交点
是(2,0);【原题有错!不是(-2,0),应是(2,0)】
(2)m为何值时,俩交点之间的距离为12;
(3)m为何值是,俩交点之间的距离最小
(1)由于判别式△=[-(m²+4)]²-4(-2m²-12)=m⁴+16m²+64=(m+8)²>0对任何m都
成立,故其图像与x轴总有两个交点.且当x=2时,y(2)=4+2(m²+4)-2m²-12=0,故必有
一交点(2,0).
(2).设两交点为A(x₁,0),B(2,0)
则│AB│=│x₁-2│=12,故x₁=14或-10.
当x₁=14时,y(14)=14²+14(m²+4)-2m²-12=12m²+240=0(无解,故m≠14)
当x₁=-10时,y(-10)=(-10)²-10(m²+4)-2m²-12=-12m²+48=0,m²=4,故得m=±2.
(3).│AB│=│x₁-2│=√[(x₁-2)²]=√[(x₁+2)²-8x₁](下面用韦达定理)
=√{[-(m²+4)]²-4(-2m²-12)}=√(m⁴+16m²+64)≥8,当m=0时等号成立.
即当m=0时,两交点间的距离最小,最小值为8.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.