如何证明圆内一点P到圆的最大距离与最小距离

如何证明圆内一点P到圆的最大距离与最小距离

题目
如何证明圆内一点P到圆的最大距离与最小距离
答案
如图所示,过点P作直径AB,则PA是点P到圆的最大距离,PB是点P到圆的最小距离
证明如下:
在圆上任取一点不同于点A的点A',连接OA',PA'
则有PO+OA'>PA',
而PO+OA'=PO+OA=PA.(因为OA,OA'都是半径)
所以PA>PA'
因为A'是不同于A的圆上任意一点
所以PA是点P到圆的最大距离
同理在圆上取不同于点B的点B'
可证得OP+PB'>OB'=OB=OP+PB
所以PB<PB'
即PB是点P到圆的最小距离.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.