当x趋向于无穷大时,e的x次方的极限是多少

当x趋向于无穷大时,e的x次方的极限是多少

题目
当x趋向于无穷大时,e的x次方的极限是多少
当x趋向于正无穷大,e的x/2乘以1+1/4x并除以e的x次方的极限是多少 怎么求?
答案
原式化简为(1+x/4)/e^(x/2),等于1/e^(x/2)+x/(4e^(x/2)),e^(x/2)的极限是正无穷大,所以1/e^x/2的极限是0,再看x/(4e^(x/2),当x趋向无穷大时,x与ex相等,所以为1,即上式的极限是1/4,最后相加是1/4.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.