线性代数问题,证明向量组线性无关

线性代数问题,证明向量组线性无关

题目
线性代数问题,证明向量组线性无关
设矩阵A的秩等于r,试证明:
如果存在列向量A1,A2,...Ar属于A,B1,B2,...Br属于A,使得A=A1B1T+A2B2T+...ArBrT成立,则向量组A1,A2,...Ar,与B1,B2,...Br分别线性无关.
T表示转制.
答案
A=a1b1T+.+arbrT=(a1,a2,...ar)(b1T,b2T,...brT)T,【写成行向量和列向量乘积的形式】记:C=(a1,a2,...ar),B=(b1T,b2T,...brT)T,则有:CB=Arank(CB)=rank(A)=rr=rank(CB)≤min{rank(C),rank(B)}不妨设:rank(B)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.