设两个随机变量X,Y相互独立,且都服从均值为0、方差为1/2的正态分布,求随机变量|X-Y|的方差.

设两个随机变量X,Y相互独立,且都服从均值为0、方差为1/2的正态分布,求随机变量|X-Y|的方差.

题目
设两个随机变量X,Y相互独立,且都服从均值为0、方差为
1
2
答案

令:Z=X-Y,
则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,
且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=
1
2
+
1
2
=1

因此,Z=X-Y~N(0,1),
∴E|X-Y|=E|Z|=
+∞
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.