设f(x)实在定义域R上的偶函数,当0≤x<π/2时,f(x)=cos(x+π/3)-1/2,且f(π+π/3)=f(x)

设f(x)实在定义域R上的偶函数,当0≤x<π/2时,f(x)=cos(x+π/3)-1/2,且f(π+π/3)=f(x)

题目
设f(x)实在定义域R上的偶函数,当0≤x<π/2时,f(x)=cos(x+π/3)-1/2,且f(π+π/3)=f(x)
1.求出f(x)在(-π/2,π/2)上的解析式
2.求f(31/6π)
答案
1)f(x)在R上是偶函数,则f(x)=-f(-x)
已知0≤x≤π/2时,f(x)=cos(x+π/3)-1/2;则f(x)=-f(-x)=-cos(-x+π/3)+1/2=cos(x-π/3)+1/2
2)f(31π/6)=f(π+1π/6)=f(1π/6)=-1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.