设不等式组x≥1x-2y+3≥0y≥x,所表示的平面区域是A 1,平面区域A 2与A 1关于直线3x-4y-9=0对称,对于A 1中任意点M与A2中任意点N,|MN|的最小值为( ) A.285 B
题目
设不等式组
,所表示的平面区域是
,平面区域
与关于直线3x-4y-9=0对称,对于
中任意点M与A
2中任意点N,|MN|的最小值为( )
A.
B.
C. 2
D. 4
答案
由题意知,所求的|MN|的最小值,即为区域A
1中的点到直线3x-4y-9=0的距离的最小值的两倍,
画出已知不等式表示的平面区域,如图所示,
可看出点B(1,1)到直线3x-4y-9=0的距离最小,此时d=
=2
故|MN|的最小值为4,
故选D
根据已知约束条件画出约束条件的可行域A1,根据对称的性质,不难得到:当M点距对称轴的距离最近时,|MN|有最小值.
简单线性规划.
利用线性规划解平面上任意两点的距离的最值,关键是要根据已知的约束条件,画出满足约束约束条件的可行域,再去分析图形,根据图形的性质、对称的性质等找出满足条件的点的坐标,代入计算即可求解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点