常微分方程求解:dy/dx=e^(y/x)+y/x

常微分方程求解:dy/dx=e^(y/x)+y/x

题目
常微分方程求解:dy/dx=e^(y/x)+y/x
RT
答案
令u=y/x
y=ux
y'=u+xu'
原式化为
u+xu'=e^u+u
所以
xu'=e^u
所以
e^(-u)du=dx/x
那么
-e^(-u)=lnx+c
即e^(-u)=ln(C/x)
-u=ln[ln(C/x)]
所以y/x=-ln[ln(C/x)]
y= -xln[ln(C/x)]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.