如图,在平行四边形ABCD中,∠BAD的平分线与BC边相交于点E,∠ABC的平分线与AD边相交于点F. 请证明四边形ABEF是菱形.
题目
如图,在平行四边形ABCD中,∠BAD的平分线与BC边相交于点E,∠ABC的平分线与AD边相交于点F. 请证明四边形ABEF是菱形.
答案
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠4=∠5,
∵∠ABC的平分线BF,
∴∠3=∠4,
∴∠3=∠5,
∴AF=AB,
∵AD∥BC,
∴∠1=∠AEB,
∵∠BAC的平分线AE,
∴∠1=∠2,
∴∠2=∠AEB,
∴BE=AB,
∴AF=BE,
∵AF∥BE,
∴四边形ABEF是平行四边形,
∵AF=AB,
∴平行四边形ABEF是菱形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点