证明:在连续的N个正整数中,有且仅有一个数被N整除.

证明:在连续的N个正整数中,有且仅有一个数被N整除.

题目
证明:在连续的N个正整数中,有且仅有一个数被N整除.
同上
答案
一个数被N除,得到的余数情况有N种,即余0、余1、余2……余(N-1)
由于是连续的N个正整数,所以这N个数分别除以N的余数必定是0、1、2、……(N-1),其中只有余数为0的能被N整除,所以得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.