若二次函数f(x)=x^2-ax+a/2在区间[0,1]上的最小值为g(a),求g(a)的最大值
题目
若二次函数f(x)=x^2-ax+a/2在区间[0,1]上的最小值为g(a),求g(a)的最大值
答案
f(x)=x^2-ax+a/2的对称轴为:x=a/2
1)当a/2>1时,即a>2时,g(a)=f(1)=1-a+a/2=1-a/2
2)当0≤a/2≤1时,即0≤a≤2时,g(a)=f(a/2)=a/2-a^2/4
3)当a/2<0时,即a<0时,g(a)=f(0)=a/2
所以当a=1时g(a)有最大值:g(1)=1/2-1/4=1/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点