在等差数列{an}中,a1>0,前n项之和为Sn,且S7=S13,问n为何值时Sn最大?
题目
在等差数列{an}中,a1>0,前n项之和为Sn,且S7=S13,问n为何值时Sn最大?
答案
s7=7(a+a+6d)/2
s13=13(a+a+12d)/2
7(a+3d)=13(a+6d)
7a+21d=13a+78d
6a+57d=0
a+19d/2=0
a+9.5d=0
所以 a+9d>0,a+10d<0
所以 a10>0 a11<0
所以n=10时 有Sn最大.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点