arccosx+ arcsinx=PI/2 怎么证明
题目
arccosx+ arcsinx=PI/2 怎么证明
答案
这个证明题用了一个定理:如果一个函数的导数为0,则该函数是一个常数函数
令f(x)=arccosx+ arcsinx,则
f(x)'=-1/√(1-x^2)+1/√(1-x^2)=0,说明f(x)是一个恒定不变的常数
而f(0)=arccos0+ arcsin0=PI/2+0=PI/2
所以f(x)=PI/2,即arccosx+ arcsinx=PI/2
注:f(x)'是指f(x)的导数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点