记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10. (1)求数列{an}的通项公式; (2)令bn=an•2n(n∈N*),求数列{bn}的前n项和Tn.

记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10. (1)求数列{an}的通项公式; (2)令bn=an•2n(n∈N*),求数列{bn}的前n项和Tn.

题目
记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10.
(1)求数列{an}的通项公式;
(2)令bn=an•2n(n∈N*),求数列{bn}的前n项和Tn
答案
(Ⅰ)设等差数列{an}的公差为d,由a2+a4=6,S4=10,
可得
2a1+4d=6
4a1+
4×3
2
d=10
,(2分),
a1+2d=3
2a1+3d=5

解得
a1=1
d=1
,(4分)
∴an=a1+(n-1)d=1+(n-1)=n,
故所求等差数列{an}的通项公式为an=n.(5分)
(Ⅱ)依题意,bn=an•2n=n•2n
∴Tn=b1+b2++bn=1×2+2×22+3×23++(n-1)•2n-1+n•2n,(7分)
又2Tn=1×22+2×23+3×24+…+(n-1)•2n+n•2n+1,(9分)
两式相减得-Tn=(2+22+23++2n-1+2n)-n•2n+1(11分)=
2(1−2n)
1−2
−n•2n+1
=(1-n)•2n+1-2,(12分)
∴Tn=(n-1)•2n+1+2.(13分)
(1):利用待定系数法,设首项和公差,由a2+a4=6,S4=10,列方程组,可得数列首项和公差,从而得解.
(2):由an=n,bn=an•2n=n•2n可知,要求{bn}的前n项和,可利用错位相减的方法求得.(一个等差数列和一个等比数列对应项之积组成的数列,可用错位相减法求和)

数列的求和;等差数列的前n项和.

本题是数列求通项和前n项和的题型,高考常见,其中:
(1)可利用利用待定系数法求解,这是解数列题的一般方法,要熟练掌握.
(2)对于一个等差数列和一个等比数列对应项之积组成的数列,可用错位相减法求和,这也是教材推导等比数列前n项和公式时的方法.另外数列求和的方法还有倒序相加,裂项相消,分组求和等方法,要熟练掌握.都是高考中常考的知识点.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.