已知抛物线的顶点在原点.焦点在圆x^2+y^2-4x+3=0 的圆心F上.(1)求抛物线的标准方程

已知抛物线的顶点在原点.焦点在圆x^2+y^2-4x+3=0 的圆心F上.(1)求抛物线的标准方程

题目
已知抛物线的顶点在原点.焦点在圆x^2+y^2-4x+3=0 的圆心F上.(1)求抛物线的标准方程
(2)若过抛物线F且倾斜角为135度的直线与抛物线分别交于A.B 两点,求|AB|的值
答案
⑴∵圆的方程为x²+y²-4x+3=0,整理得(x-2)²+y²=1,∴圆心为(2,0).
又∵抛物线的顶点在原点,∴设其方程为y²=ax,则焦点在(a/4,0)处.
∴a=8,即抛物线方程为y²=8x
⑵∵tan135º=-1,∴设直线方程为y=-x+b.
∵直线经过(2,0),代入上式解得直线方程为y=-x+2
联立方程组
y²=8x…①
y=-x+2…②
得x²-12x+4=0.设交点坐标为(x1,y1),(x2,y2),
则有x1+x2=12,x1x2=4,
∴(x1-x2)²=(x1+x2)²-4x1x2=128
那么利用②式得y1-y2=-(x1-x2),
∴(y1-y2)²=(x1-x2)² =128
∴|AB|=√[(x1-x2)² +(y1-y2)²]=√(128+128)= √256=16.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.