设x1,x2,x3,x4,x5,x6,x7是自然数,且x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+x3=x4,x3+x4=x5,x4+x5=x6,x5+x6=x7,又x1+x2+

设x1,x2,x3,x4,x5,x6,x7是自然数,且x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+x3=x4,x3+x4=x5,x4+x5=x6,x5+x6=x7,又x1+x2+

题目
设x1,x2,x3,x4,x5,x6,x7是自然数,且x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+x3=x4,x3+x4=x5,x4+x5=x6,x5+x6=x7,又x1+x2+x3+x4+x5+x6+x7=2010,那么x1+x2+x3的值最大是 ______.
答案
∵x1+x2+x3+x4+x5+x6+x7=13x1+20x2=2010,
利用整除性,x1必是10的奇数倍,又x1<x2
可得
x1=10
x2=94
x1=30
x2=81
x1=50
x2=68
,(x1+x2+x3max=2(x1+x2max=2(50+68)=236.
故答案为:236.
不定方程的思想结合x1+x2+x3+x4+x5+x6+x7=13x1+20x2=2010,可得x1必是10的奇数倍,然后根据x1<x2可得出答案.

数的整除性.

本题考查数的整除性问题,综合了不定方程的思想,难度较大,关键是根据题意得出x1必是10的奇数倍.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.