极限lim(x-sinx)/[x(1-cosx)] 其中x趋向于0

极限lim(x-sinx)/[x(1-cosx)] 其中x趋向于0

题目
极限lim(x-sinx)/[x(1-cosx)] 其中x趋向于0
答案
lim(x→0)(x-sinx)/[x(1-cosx)]
=lim(x→0)(1-cosx)/[(1-cosx)+xsinx] 罗必塔法则
=lim(x→0)sinx/[sinx+sinx+xcosx]
=lim(x→0)sinx/[2sinx+xcosx]
=lim(x→0)1/[2+xcosx/sinx]
=lim(x→0)1/lim(x→0)[2+xcosx/sinx]
=1/[2+1]
=1/3
附加说明:
lim(x→0)xcosx/sinx
=lim(x→0)[cosx-xsinx]/cosx
=[1-0]/1
=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.