用48个棱长1厘米的正方体摆成形状不同的长方体,一共有多少种不同的摆法,其中表面积最小的是多少平方厘米?
题目
用48个棱长1厘米的正方体摆成形状不同的长方体,一共有多少种不同的摆法,其中表面积最小的是多少平方厘米?
答案
:(1)1×48排列:长宽高分别为:48厘米、1厘米、1厘米,表面积为:
(48×1+48×1+1×1)×2,
=97×2,
=194(平方厘米),
(2)2×24排列:长宽高分别为:24厘米、2厘米、1厘米;表面积为:
(24×2+24×1+2×1)×2,
=74×2,
=148(平方厘米),
(3)3×16排列:长宽高分别为:16厘米、3厘米、1厘米;表面积为:
(16×3+16×1+3×1)×2,
=67×2,
=134(平方厘米),
(4)4×12排列:长宽高分别为:12厘米、4厘米、1厘米;表面积为:
(12×4+12×1+4×1)×2,
=64×2,
=128(平方厘米),
(5)6×8排列:长宽高分别为:8厘米、6厘米、1厘米,表面积为:
(8×6+8×1+6×1)×2,
=62×2,
=124(平方厘米),
(6)2×2×12排列:长宽高分别为:12厘米、2厘米、2厘米;表面积为:
(12×2+12×2+2×2)×2,
=52×2,
=104(平方厘米),
(7)2×3×8排列:长宽高分别为:8厘米、3厘米、2厘米;表面积为:
(8×3+8×2+3×2)×2,
=46×2,
=92(平方厘米),
(8)2×4×6排列:长宽高分别为:6厘米、4厘米、2厘米;表面积为:
(6×4+6×2+4×2)×2,
=44×2,
=88(平方厘米),
(9)3×4×4排列:长宽高分别为:4厘米、4厘米、3厘米;表面积为:
(4×3+4×3+4×4)×2,
=40×2,
=80(平方厘米),
答:一共有9种不同的摆法,其中表面积最小的是80平方厘米.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点