一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有_个约数.

一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有_个约数.

题目
一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有______个约数.
答案
设这个自然数是a,则a分解质因数为:a=a1b1×a2b2×a3b3×…×anbn;则a3=a13b1×a23b2×a33b3×…×an3bn;(n为项数)
a3的约数个数为100个,根据约数和定理可得:(3b1+1)×(3b2+1)+(3b3+1)×…×(3bn+1)=100,
而100=2×2×5×5,又因为b1、b2、b3…都是整数,
所以符合题意的情况有:
(1)b1=3,b2=3,n=2时:a的约数个数为:(3+1)×(3+1)=16(个),
(2)b1=33,n=1时:
a的约数个数为:33+1=34(个),
答:综上所述,这个自然数本身最少有16个约数.
故答案为:16.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.