如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式及两直线与x轴围成三角形的面积.
题目
如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式及两直线与x轴围成三角形的面积.
答案
过A作AC⊥x轴于C点
则AC=3,OC=4,所以OA=5=OB
则B(0,-5)(1分)
设直线AO:y=nx过A(4,3)
则3=4n,n=0.75(2分)
所以y=0.75x(3分)
设直线AB:y=kx+b过A(4,3)、B(0,-5)
则:
.
解之得:
.(4分)
所以:y=2x-5(5分)
令y=0,得x=2.5
则D(2.5,0)(6分)
两直线与x轴围成三角形AOD的面积为2.5×3÷2=3.75(7分)
先求出正比例函数的解析式,再求出点B的坐标,从而可得一次函数解析式y=2x-5,求出其与x轴的交点坐标,从而求出直线与x轴围成三角形AOD的面积为2.5×3÷2=3.75.
两条直线相交或平行问题;待定系数法求一次函数解析式.
主要考查了用待定系数法解函数解析式和一次函数图象的性质,还考查了学生的分析能力和读图能力.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点