证明级数∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))是绝对收敛

证明级数∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))是绝对收敛

题目
证明级数∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))是绝对收敛
答案
|(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))| 《 (1/π)^n
因为∑(1/π)^n收敛,所以:∑(n=1到∞)(-1)^(n-1)*1∕(π^n)*sin(π∕(n+1))绝对收敛
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.