已知数列{an}前n项和为Sn=3×2^n-1,求通项公式

已知数列{an}前n项和为Sn=3×2^n-1,求通项公式

题目
已知数列{an}前n项和为Sn=3×2^n-1,求通项公式
答案
Sn=3×2^n-1
当 n=1时,a1=S1=3*2-1=5
当 n>=2时,S(n-1)=3*2^(n-1)-1
an=Sn-S(n-1)
=(3×2^n-1)-[3×2^(n-1)-1]
=3×2^(n-1)
所以 an=3×2^(n-1) (n>=2)
5 (n=1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.