设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

题目
设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换
答案
证明:由 AB=A+B
得 (A-E)(B-E) = AB-A-B+E = E
所以 A-E 可逆,且 E = (B-E)(A-E) = BA-B-A+E
所以 BA = A+B = AB.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.